
Aß-009-350

DSTO-TR-004S

r

r^

FFG-7 Class Frigate Airwake Viewer

C. A. Heinze and A. M. Arney

19950214 076

APPROVED

FOR PUBLIC RELEA8!

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE

FFG-7 Class Frigate Airwake Viewer

C. A. Heinze and A. M. Arney

Aeronautical and Maritime Research Laboratory

ABSTRACT

Technical Report

This document presents the operation of the graphical display program ffgViezu,
which has been written to run on the Silicon Graphics family of computers. The
program allows the airwake around an 'Adelaide' class FFG-7 frigate to be
displayed using data generated from wind tunnel testing or from actual ship
trials. Details of the required file formats and of the structure of the source code
are included here, as are detailed operating instructions.

Aecsssioa lös? "*f* I

HTTS GRA&I ,.
P5MC TAB
UnsiKKnivtceyfl . D
Jus t Lf 1 o at I os—i—*

By—
ist r il>y tlon/gr^.

" 7$, Väil BEd/oy

ll S"
A\

., V?

APPROVED FOR PUBLIC RELEASE

DSTO-TR-0048

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

•f-J?

"-' €

«f« «V5

Published by

DSTO Aeronautical and Maritime Research Laboratory
GPO Box 4331
Melbourne Victoria 3001 Australia

Telephone: (03)6267000
Fax: (03)626 7999
© Commonwealth of Australia 1994
AR No. 008-350
AUGUST 1994

APPROVED FOR PUBLIC RELEASE

FFG-7 Class Frigate Airwake Viewer

EXECUTIVE SUMMARY

This report details the graphical display program ffgView, which allows the user to view
in three dimensions a vector display of airflow around an 'Adelaide' class FFG-7 frigate.
This package can readily be adapted to display airflow around any object by replacing
the frigate geometry file with a file representing the required object. Wind vectors are
displayed in colour to enable easy recognition of velocities, and the view can be
manipulated using a mouse to provide the user with any desired viewing angle. The
program is coded in C on a Silicon Graphics (SG) computer.

The graphical display package was designed to enable the display of airwake data
collected during trials on a Royal Australian Navy 'Adelaide' class frigate. The
'Adelaide' class is based on the US FFG-7 class frigate and for the purposes of airflow
over and around the flight deck the two classes are identical. With the availability of
wind tunnel data for the frigate, it was considered desirable to be able to display this
and perhaps other types of data that may become available in the future. For this
reason, a general data file format for input into the graphical display program was
chosen. Conversion programs were written to deal with the data format used for the
full scale data as well as that used for the wind tunnel results.

The display package ffgView has the following capabilities:

• Display in colour an orthogonal or perspective view of the flight deck of an FFG-7.
• Display the airwake patterns around the frigate using coloured vectors.
• Allow the input of data obtained from any source conforming to the specified input

file format.
• Provide utilities allowing the conversion of raw data to the required input file

format.
• Allow three-dimensional rotation, translation, and scaling of the view.
• Provide a means of saving and printing screen images

The limitations of this package are as follows:

• It can only be run on machines supporting SG Graphics Library (GL) utilities, i.e. SG
machines.

• Screen images can only be saved in Graphics Interchange Format (GIF) or SG Red-
Green-Blue (RGB) format. An image saved in GIF format is easily transportable
between machines (including Macintosh and IBM compatible personal computers).

Other features of importance to the functioning of ffgView are explained throughout this
report. To facilitate easier modification in the future, details of the structure of the code
are given.

The frigate airwake viewer is successfully running on an SG workstation. It has already
proved useful in the early analysis of available data and will continue to be an important
tool for a variety of analysis tasks within Air Operations Division.

With modification the program could be used for a wider variety of tasks than the
specialised frigate airwake analysis for which it is currently being used.

Authors

CA. Heinze
Air Operations Division

Clinton A. Heinze graduated with first class honours from
Aerospace Engineering at the Royal Melbourne Institute of
Technology in 1990. He commenced employment at the then
Aeronautical Research Laboratory in 1989, firstly as a vacation
student, then in 1990 as a cadet engineer, and finally as a
graduate engineer. During this time he has worked in several
areas, including air combat analysis, aircraft turbojet engine
performance and testing, aircraft structural fatigue and fracture
repair, and helicopter flight dynamics. He is currently
undertaking work involved with the analysis of air-to-air combat.

A. M. Arney
Air Operations Division

1
Ashley Arney graduated from the University of Sydney in 1981,
having obtained an Aeronautical Engineering Degree, with
honours. Since commencing employment at the then
Aeronautical Research Laboratory in 1982, he has been involved
with the mathematical modelling of the performance and flight
dynamics of a wide range of helicopters. He has also obtained
extensive experience in trials, data processing, and the use of such
data for development of the appropriate mathematical model.
More recently he has been involved in modelling the
helicopter/ship dynamic interface, and gathering data for
development purposes.

CONTENTS

1. INTRODUCTION 1

2 . PROGRAM INFORMATION 1

2.1 Input File Formats 1

2.1.1 Geometry File Format 1

2.1.2 Velocity Vector File Format 3

2.2 Source Code 4

2.2.1 Modules 4

2.2.2 Compiling 5

3. RUNNING ffgView 6

3.1 Mouse Operation 6

3.2 Menu Options 7

3.3 Other Features 10

4. STRUCTURE OF ffgView 10

4.1 Initialising the Graphics 12

4.2 Dynamic Memory Allocation 12

4.2.1 Frigate Data Structure 12

4.2.2 Velocity Vector Data Structure 13

4.3 Frigate Drawing Axes 13

4.4 Frigate Geometry File 14

4.5 Frigate Colour Information 14

4.6 Drawing the Data Entry Boxes 1 5

4.7 Drawing the Velocity Vectors 15

4.8 Drawing the Information/Menu Screens 16

4.9 The Lighting Model 16

4.10 Mouse and Keyboard Inputs 16

4.11 Exiting ffgView 16

5. CONCLUDING REMARKS 17

REFERENCES 17

APPENDIX A - UTILITY PROGRAMS ASSOCIATED WITH ffgView

APPENDIX B - SAMPLE OUTPUT FROM ffgView

APPENDIX C - AXES SYSTEMS USED BY ffgView

DISTRIBUTION

DOCUMENT CONTROL DATA

1 . INTRODUCTION
This report details the graphical display program ffgView, which allows the user to view in three
dimensions a vector display of airflow around an 'Adelaide' class FFG-7 frigate. This package
can readily be adapted to display airflow around any object by replacing the frigate geometry file
with a file representing the required object. Wind vectors are displayed in colour to enable easy
recognition of velocities, and the view can be manipulated using a mouse to provide the user with
any desired viewing angle. The program is coded in C on a Silicon Graphics® (SG)1 computer.

The graphical display package was designed to enable the display of airwake data collected during
trials in 1989 on a Royal Australian Navy 'Adelaide' class frigate (see Refs 1 and 2). The
'Adelaide' class is based on the US FFG-7 class frigate and for the purposes of airflow over and
around the flight deck the two classes are identical. With the availability of wind tunnel data for
the frigate (Ref. 3), it was considered desirable to be able to display this and perhaps other types
of data that may become available in the future. For this reason, a general data file format for
input into the graphical display program was chosen. Conversion programs were written to deal
with the data format used for the full scale data as well as that used for the wind tunnel results.

The display package ffgView has the following capabilities:

• Display in colour an orthogonal or perspective view of the flight deck of an FFG-7.

• Display the airwake patterns around the frigate using coloured vectors.

• Allow the input of data obtained from any source conforming to the specified input file
format.

• Provide utilities allowing the conversion of raw data to the required input file format.

• Allow three-dimensional rotation, translation, and scaling of the view.

• Provide a means of saving and printing screen images.

The limitations of this package are as follows:
• It can only be run on machines supporting SG IRIS® Graphics Library™ (GL) utilities,

i.e. SG machines.
• Screen images can only be saved in Graphics Industry Format (GIF) or SG Red-Green-

Blue (RGB) format. An image saved in GIF format is easily transportable between
machines (including Macintosh and IBM compatible personal computers).

Other features of importance to the functioning of ffgView are explained throughout this report.
To facilitate easier modification in the future, details of the structure of the code are given.

Imperial units are adopted in this report because (a) they are used exclusively by research workers
in the US with whom Air Operations Division (AOD) staff are collaborating and (b) both the
helicopter and ship referred to are built in the US to imperial unit specifications.

2. PROGRAM INFORMATION

2.1 Input File Formats

2.1.1 Geometry File Format
The geometry file is used by the graphics program to define the shape, size, and colour of the
frigate (or other object) about which the airflow vectors are to be displayed. The shape of the
frigate is defined by a number of polygons. This geometry file format, developed by AOD, is
similar to that used by SG for some of their demonstration programs. A viewer for these AOD
geometry files had previously been written (see Ref. 4) and was used as the basis for the sections
of the code that display the frigate.

1 Silicon Graphics, Inc. Mountain View, California, USA.

1

All data within the geometry file have units of feet and the origin is at the bullseye on the flight
deck (on the ship centreline 42.3 ft aft of the hangar face). See Section 4.3 for a definition of the
axis system which is used to draw the frigate.

The structure of a typical geometry file is as follows:

• Line 1 contains two integer numbers. The first, num_verts, is the number of polygon
vertices included in the file. The second, num_polys, is the number of polygons formed
by these vertices.

• The following num_verts lines contain an integer (the vertex number, not used by the
program but included to make the file more readable) and three real numbers. The three
real numbers are the x, y, and z coordinates of each vertex measured in feet from the
bullseye on the flight deck.

• The next two lines contain information about the material types (degrees of opaqueness,
shininess, etc.) of the polygons to follow. The first number in the first line contains the
number of times the material type will be changed when the object is drawn. The
remaining numbers on that line are the numbers of polygons to be made from the material
specified by the integer value on the line directly below it. This is more clearly illustrated
by the example below.

• The rest of the file contains information about the polygons which compose the frigate.
The first number indicates the number of vertices that will compose the polygon. This is
followed by the vertex number of each of the vertices which comprise that polygon. Note
that each polygon may have as many as 256 sides.

Below is an example of a simple geometry file representing a cube, as shown in Fig. 1.
Comments not included in the actual data file are shown in italics.

8 6 Number of vertices and number of polygons

1 0.0 0.0 0.0 Vertex 1 at x=0.0, y=0.0, z=0.0
2 0.0 1.0 0.0 Vertex 2 at x=0.0, y=1.0, z=0.0
3 1.0 1.0 0.0
41.0 0.0 0.0 ■
50.00.01.0
6 0.0 1.0 1.0
7 1.01.01.0
8 1.0 0.0 1.0 End of vertex data

3 4 1 1 3 Sets of material data to follow. Make four
5 3 7 polygons material 5, one material 3, and one 7.

Start of polygon data .-
4 1 2 3 4 4 sided polygons made by joining
4 5 8 7 6 vertices 12 3 4, 5876, etc.
4 1 4 8 5
4 4 3 7 8
4 2 6 7 3
4 15 6 2

The order in which the vertices of each polygon are connected is important. The lighting model
will decide how the polygons are to be shaded by using calculations involving the polygon
normals. For the model to be shaded correctly, the polygon normals must face towards the
viewer. To accomplish this the polygon vertices are numbered in a counter-clockwise direction
when viewed from the front of the polygon, as shown in Fig. 1.

Polygon 2673

Polygon normal
facing viewer

Polygon 15 6 2

Polygon 12 3 4

Figure 1. Numbering of Polygon Vertices

2.1.2 Velocity Vector File Format
Three types of velocity vector data file are used. These are 'Shiptrial', "WindtunneF, and
'Comparison' which respectively give results of the full scale test, wind tunnel test, and
comparisons of the two. The 'Shiptrial' and 'Windtunnel' types are created using the utility
program FFGWake, described in Appendix A. The 'Comparison' data file type is created in one
of two ways. It can be the product of program windcomp (Appendix A) or it can be made by
editing together one or more of the other file types. This will allow the user to view several sets
of data from a full scale trial conducted at the same yaw angle but at varying speeds
simultaneously or to view a comparison between the full scale data and the wind tunnel data.
A typical velocity vector data file for the full scale trial is shown below. Comments not included
in the actual data file are shown in italics. This example data file contains only nine points. In
reality most trials involved the collection of data at 39 points. A wind tunnel data file will
normally contain data at more than 2000 points.
Shiptrial Type of Data File

9 Numb er of Data Points in this File

X, Y, Z Velocities (ft/s) X, Y, Z Positions (ft) Row Column Layer

-3 .022 -19.100 -22.776 0.000 0.000 31.500 1 1 1

- 1 . 51 ü -a.747 -4.147 0.000 0.000 21.000 1 1 2

-3.219 2.672 -4.728 0.000 0.000 10.500 1 1 3

-7.640 -19.613 -29.240 0.000 -10.500 31.500 1 2 1

-3.732 -14.857 -19.400 0.000 -10.500 21.000 1 2 2

-5.92 5 -9.048 -11.495 0.000 -10.500 10.500 1 2 3

-7.390 -19.661 -33.316 0.000 -17.060 31.500 1 3 1

-4.067 -17.142 -31.245 0.000 -17.060 21.000 1 3 2

-7 .801 -14.103 -27.667 0.000 -17.060 10.500 1 3 3

-3.500 - 18.00 Free stream x and y components (' Shipt rial ' & 'Windtunnel')

-3.243 - 19.123 Aft an emometer x and y components ('Shiptrial ' only)

An example of a 'Comparison' type for two sets of full scale data is shown below. Due to the
large number of data points in each data set (41), some intermediate lines of data have been
omitted for clarity.

Comparison

2

41 030degl0kn1

41 030deg20kn

-15.946 7.733

-6.464

-1.661

-14.401

-8.089

3.193

2.908

8.641

2.605

Type of Data File

Number of Data Sets

Number of Data Points in First Data Set and Legend Title

Number of Data Points in Second Data Set and Legend Title

2.454

0.951

0.546

-0.054

-0.787

23.850 -17.060

23.850 -17.060

23.850 -17.060

0.000 0.000

0.000 0.000

31.500

21.000

10.500

31.500

21.000

First Data Set

-16.84029 7.086

-13.47363 5.909

-22.767 19.096

-4.161 8.730

0.000 50.000 0.000 50.000 111

0.000 -40.000 -2.100 13.330 13 1

3.035 0.000 0.000 31.500 2 3 3

1.525 0.000 0.000 21.000 2 3 2

First Data Set Free Stream

First Data Set Aft Anemometer

Second Data Set

-30.397 21.043 0.000 50.000 0.000 50.000 111 Second Data Set Free Stream

-20.662 13.050 0.000 -40.000 -2.100 13.330 13 1 Second Data Set Aft Anemometer

Referring to the examples above, the first line of all types of velocity vector file contains a
keyword ('Shiptrial', 'Windtunnel', or 'Comparison') identifying the type of file.
For data file types 'Shiptrial' and 'Windtunnel' the second line of the data file contains a single
integer which indicates the number of data points contained within that file. The second line of a
'Comparison' data file will contain the number of data sets contained in that file. This can range
from two (e.g. a wind tunnel run compared with a full scale test, or two sets of full scale data for
the same direction at different speeds) but can be as large as five. The next lines in a
'Comparison' file will contain a single integer which indicates the number of data points in each
set, along with a comment which will be displayed in the legend(Section 3.2).
For all file types the following lines will each have six real numbers and three integers. The six
real numbers are, in order, the x, y, z components of velocity at the point, and the x, y, z
positions of that point. The three integers correspond to the longitudinal, lateral, and vertical rows
in which that particular data point is to be found. This information is used by JfgView when
displaying sections of data as opposed to displaying every data point. As both the full scale and
wind tunnel data were collected in a grid, it is a simple matter to number the rows, columns, and
layers so that they can be displayed individually using the display program.
For data file types 'Shiptrial' and 'Windtunnel' the next line contains the x and y coordinates of
the free stream velocity. This is measured at a reference anemometer for the full scale data and at
an upstream reference point in the case of the wind tunnel data. The full scale data file concludes
with the x and y velocity components from the ship reference anemometer.

2.2 Source Code

2.2.1 Modules
The source code for JfgView is split into several source modules. These files each contain several
C functions which are related. This modularity allows for ease of modifying and recompiling the
source code. The source files are as follows:

1 Indicates a wind 30 deg to starboard at 10 kn relative to the ship.

4

ffgMain.c

ffgDisplay.c

ffgUtils.c

ffgMenu.c

ffglnit.c

ffgRead.c

This file contains all of the basic drawing routines as well as the principal C
function 'main ()', which controls the basic functioning of the program.

The functions for drawing the basic screen and the menu windows, legend,
help screens, etc. are contained in this file.

This file contains all of the functions for freeing the dynamically allocated
memory and for exiting the program. It also contains the functions which
control any input by the user which needs to be typed at the keyboard.

This file contains all of the functions required for drawing the main menu
screen and its icons, and the functions which control the logic of the
operation of the menu.

All of the functions which initialise variables and define material types are
included within this file.

This file contains functions for reading the geometry and the velocity data
files and setting some of the associated parameters. All of the dynamic
memory is allocated in this file.

Also necessary for compiling the source code are the header files ffgMain.h, ffg.h,
ffgMaterials.h, ffgTypedefs.h, ffgHeaders.h, and ffgColorvecs.h. The header files contain
definitions and constants assigned for the entire program. If the header files are included in the
count there is a total of slightly more than 2600 lines of code comprising ffgView.

2.2.2 Compiling
To expedite compilation, a makefile (shown below) which utilises the UNIX 'make' facility was
written. It is necessary to link in the shared graphics libraries (-lgl_s), the mathematics libraries
(-lm), and the dynamic memory allocation libraries (-lmalloc) when the program modules are
linked. Also important is the need to use the switch '-cckr' in the compilation of the modules.
This program was written originally using traditional C. During programming, the compiler was
updated and became fully ANSI C compatible. This tightened up some of the variable checking
and caused errors in sections of the code where pointers to structures were used (quite validly)
when pointers to arrays were expected. The '-cckr' flag caused the ANSI compiler to compile in
traditional C and avoid this problem.

Makefile for ffgView

C. Heinze : AOD DSTO

0 = ../obj#

S = . ./srcft
R = ~/clint/airwake/ffgc#

H = ../src/ffgHeaders#
OBJ = $(0)/ffgMain.o $(0)/ffgDisplay.o $(0)/ffglnit.o \

$(0)/ffgRead.o $(0)/ffgMenu.o $(0)ItfgUtils.o
HI = $(H)/headers.h $(H)/ffgDefines.h $(H)/ffgTypedefs.h

H2 = $(H)/ffgMaterials.b $(H)/ffgColorvecs.h

H3 = $(H)/ffg.h

H4 = $(H)/ffgMain.h

Executable

$(R)/ffg : $(0BJ)

cc $(0BJ) -lm -lmalloc -lgl_s -o ffgView

mv $(S)/ffgView $(R)/ffgView

Modules

ft
$(0)/ffgMain.o : $(S)/ffgMain.c $(HI) $(H2) ${H4)

cc -g -cckr -c $(S)/ffgMain.c

mv $(S)/ffgMain.o $(0)
$(0)/ffgDisplay.o : $(S)ItfgDisplay.c $(H1) ${H3)

cc -g -cckr -c $(S)ItfgDisplay.c
mv $(S)/ffgDisplay.o $(0)

$(0)/ffgRead.o : $(S)ItfgRead.c $(H1) $(H3)

cc -g -cckr -c $(S)ItfgRead.c
mv $(S)/ffgRead.o $(0)

${0)/ffglnit.o : $(S)/ffgInit.c $(H1) $(H2) $(H3)

cc -g -cckr -c $(S)Itfglnit.c
mv $(S)/ffgInit.o $(0)

$(0)ItfgMenu.o : $(S)ItfgMenu.c $(HI) $(H3)

cc -g -cckr -c $(S)ItfgMenu.c
mv $(S)/ffgMenu.o $(0)

$(0)/ffgUtils.o : $(S)/ffgUtils.c $(H1) $(H3)

cc -g -cckr -c $(S)ItfgUtils.c
mv $(S)/ffgUtils.o $(0)

The makefile shown above was for an existing area on the machine on which the program was
developed. To implement the makefile on a new machine or in a new area, it is necessary to
change the values to which O, S, R, and H are set to reflect the locations of the object code,
source code, executable (Run) code and the header files.

3. RUNNING ffgView
The program ffgView is run from the UNIX prompt by typing ffgView, followed by the name
of the file containing the velocity vector information. If the name of the file is not included, the
program will prompt for it. Once the program is run a representation of the flight deck of an
FFG-7 frigate will be seen, along with the basic menu screen. Examples of displays for full scale
and wind tunnel data are shown in Appendix B. The program may then be controlled by a variety
of mouse and keyboard commands described below.

3.1 Mouse Operation
The mouse is used to control the selection of menu items. Clicking the left mouse button when
the cursor is over an icon will result in that icon option being initiated. If the mouse is not in the
menu area, holding one of the mouse buttons and dragging the icon horizontally across the screen
will result in the following. If the ROTATE option is selected, the display of the frigate can be
controlled using the mouse buttons to rotate around the frigate. If the TRANSLATE option is
selected, the display will translate along the x, y, or z axes if the left, center, or right button
respectively is depressed. If the SCALE option is selected, the display will be scaled smaller or

larger by depressing any of the mouse buttons and dragging the mouse. The operation of each of
these functions is described in more detail below.

3.2 Menu Options
The following menu options are available:

ROTATE
This option changes the view point control to rotate mode, allowing rotation and scaling of the
view of the frigate using the three mouse buttons. Originally the program was structured so that
the three mouse buttons would control rotations about the three axes. This was changed so that
the left mouse button controls the azimuthal angle, the center mouse button controls the elevation
angle, and the right mouse button controls the scale factor or the distance from the viewer to the
frigate. If the viewing mode is orthogonal, then the right mouse button controls the scale factor
and thus zooms in or out on the frigate. If the viewing mode is set as perspective, then the right
mouse button controls the distance of the viewer from the frigate.

TRANSLATE
This option changes the view point control to translate mode, allowing movement of the view in
the directions of die three axes using the three mouse buttons.

SCALE
This option changes the view point control to scale mode which will zoom in or out from point
(0,0,0), the center of the flight deck, using any of the mouse buttons. This function was
originally created when the ROTATE function did not include a scale option with the right mouse
button. It is now almost redundant. However, if the perspective viewing mode has been
selected, this option can be used to scale the picture in place of using the right mouse button in the
ROTATE option to move closer to the frigate. The scale function is activated by clicking and
holding any mouse button. If the cursor is in the exact center of the screen there will be no
scaling. If the mouse is moved to the left there will be a reduction in the size of the frigate. If the
mouse is moved to the right the frigate will be scaled larger. Moving the mouse further to the left
or right will increase the rate at which the scaling occurs.

SCREEN
This option selects the background colour of the screen display. The default colour is pale green,
which was chosen as it is easy on the eye and provides clear definition of the wind vectors.

PRINT
This option selects the background colour of the screen display to be white and incorporates black
text and menu borders. This selection gives the best results when using colour printers.

DRAW FRIGATE
This option toggles the drawing of the frigate on or off. Thus it is possible to examine the wind
vectors without the presence of the frigate. This is useful if it is wished to view the flow over the
deck from beneath, where the presence of the frigate may obscure the view. The default is
drawing the frigate.

WIRE FRAME
This option displays the frigate in 'wire-frame' mode. This involves drawing only straight lines
describing the edges of the polygons. Again, this gives the opportunity to observe the velocity
vectors from previously obscured locations by rendering the frigate effectively transparent.

FLAT SHADED
This option draws the frigate using flat shaded polygons. This is the default drawing style.

GOURAUD
Gouraud shading is a function which blends colours in a special way in an attempt to remove the
tessellated appearance which is often apparent in objects such as the frigate when they are drawn
with relatively few polygons. This feature was included although its use is not recommended
since the flat shaded polygons tend to provide a more even background against which the velocity
vectors can be viewed.

WIND VECTORS
This option toggles drawing of the wind vectors on or off. The default is draw the vectors.

LEGEND
This option toggles the display of the legend on or off. When drawn, the legend appears in the
upper left corner of the screen. When viewing a 'Comparison' file, the legend indicates which
velocity vector colour refers to the respective velocity data file. When viewing a 'Shiptrial' or
'Windtunnel' file, the legend indicates a colour corresponding to a given velocity range. The
default is do not display the legend.

FILE INFO
This option toggles the display of the file information on or off. When on, information about the
currently displayed file appears in the lower left corner of the screen. Information includes the file
name, number of vectors in that particular file, type of data file, and statistical information about
the maximum and minimum velocities involved. The default is do not display file information.

OTHER FEATURES
This option toggles the display of a help screen on or off giving information on the commands
which are accessed by the keyboard. A summary of these commands is included in Table 1. The
default is do not display help screen.

ABOUT ffgView
This option toggles the display of information about the present version number of ffgView. The
default is do not display information.

LOAD FILE
This option prompts the user for the name of a velocity vector data file which is to be displayed.

IMAGE FILENAME
This option prompts the user to enter the name of the image file to be saved. An '.rgb' or a '.gif
extension will be added automatically, depending upon how the image is saved.

SAVE AS RGB
This option causes the screen image to be saved as an RGB file. The file will have the name
selected by the user plus an '.rgb' extension. If a filename has not been selected, the default
filename is 'file_l.image.rgb'.

SAVE AS GIF
This option causes the screen image to be saved as a GIF file. The file will have the name selected
by the user plus a '.gif extension or, similarly, the default 'file_l.image.gif. GIF images are
likely to be compatible with commercially available software.

JUMP TO VIEWPOINT
This option prompts the user for the azimuth angle, the inclination angle, and the scale factor.
Once these data have been entered, the viewpoint will immediately jump to the entered values.

QUIT
This option terminates ffgView after first freeing allocated memory and closing the graphics
window.

Table 1. Keyboard Commands for ffgView

A Toggle the display of the drawing axes. Default is no axes drawn.

B
Toggle back-facing on and off. Back-facing is a SG drawing function which
improves drawing times by not drawing polygons which do not face the viewer.
The default value is off.

C
Toggle scaling of the velocity vectors. If two or more full scale airwake files are
compared, the velocity vectors will be scaled according to the ratio of the
respective reference airwake velocities. Default is no scaling.

D
Display only those vectors which are in the proximity of the flight deck. This is
useful for cutting down the displayed information for the wind tunnel data.
Default is to display all data.

F
Toggle the type of vector which is drawn. The choices are (i) a straight line
vector, (ii) a line with an arrow head, and (iii) a line with a fat base resembling a
wind tunnel wool tuft. Default is option (i).

H
Display the panel normals on the model of the frigate. If the frigate is in flat
shaded mode, the panel center normals are displayed. In Gouraud shaded mode, the
panel corner normals are displayed. Default is do not display normals.

L
Label either the panels or the vertices on the model of the frigate with their
appropriate number. The V key determines which of these two options is labelled
by toggling between them.

J Enter the new inclination and azimuth angles to which the viewpoint will jump.

P Toggle the viewing mode between an orthogonal three dimensional view and a
perspective three dimensional view. The orthogonal view is the default.

Q Cycle through the airflow data displaying sections through the flow in the yz
plane of the wind axes.

w Cycle through the airflow data displaying sections through the flow in the xz
plane of the wind axes.

E Cycle through the airflow data displaying sections through the flow in the xy
plane of the wind axes.

R Display all data. Overrides P, Q, and R and reverts to showing all available data.
Does not reset the D key.

S Force all of the airwake vectors to be the same length. Default is display the
vectors at a length proportional to their respective velocity magnitudes.

V Toggle labelling of panels or vertices. See L key. Default is panels labelled.

z
Toggle z-buffering on and off. Z-buffering is a SG function which controls
hidden surface removal when drawing three dimensional images. The default is
on.

<esc> Quit ffgView.

In general if a menu icon is activated, it and its associated text will be darkened, indicating that the
particular option is currently selected. In the case of the options 'Save as RGB' and 'Save as
GIF', there will be a message 'Saving in Progress' displayed for as long as it takes for the
program to save the screen to a file.

3.3 Other Features
The features described above are the basic controlling functions for ffgView and as such are
accessed by the mouse-driven menu. There are many other controls and functions which may be
accessed via the keyboard. These features are generally more specialised and are not likely to be
used as often as those accessed by the mouse. Many, but not all, relate to the drawing of the
frigate and are remnants from the original program which was designed to display only a single
three-dimensional object.
Some of the features are not expected to be used often, but were simple to implement. This is true
of the facility which allows the user to alter the view of the frigate from an orthogonal view to a
perspective view. Experience with the program tends to suggest that the orthogonal view is more
useful. Many of these features do not relate specifically to the viewing of airwake data but may be
useful if it becomes necessary to modify the displayed frigate or to replace the frigate with some
other object about which airflow data were obtained. Table 1 describes all of the commands
which may be accessed via the keyboard.

4. STRUCTURE OF ffgView
A single main loop controls ffgView (Fig. 2), handling all keyboard and mouse events (otherwise
known as inputs). If the left mouse button is clicked, a test is made to determine whether the
mouse is in the vicinity of the menu. If the cursor is over the menu and the left mouse button is
clicked then control is passed to a function called icon_control which controls and schedules
the actions to be performed. If the cursor is not over the menu, the clicking of the left or any other
mouse button is taken to be a SCALE, ROTATE, or TRANSLATE command and action is taken
accordingly.
Following the processing of keyboard and mouse inputs, a call to the function draw_all () is
made. This function is responsible for the drawing of all of the objects on the screen. The
program will continue to loop, reading keyboard and mouse events and drawing the screen image
until a call to f f g_exit () is made. This function is activated by hitting the escape key, or
clicking the quit icon in the menu, which will result in the termination of the program.
Note that the program utilises an SG feature known as 'double buffering' in the drawing of the
graphics screen. Whenever an object is drawn, it is drawn in a buffer, not directly on the screen.
When the drawing is finished, the buffer which now contains the updated drawing is swapped for
the buffer containing the information which is currently being displayed. This means that the new
image can be flashed to the screen in a very short time, resulting in faster updating and smoother
movements of the image being displayed. The SG function which handles the swapping of the
backbuffer with the currently displayed front buffer is swapbuf f ers (), as referred to in
Fig. 2.
The program incorporates two C data structures1. One of these data structures contains all of the
information which is required by the program to draw the frigate. The other contains all of the
velocity information which is needed to draw the velocity vectors.
These structures are defined and initialised in 'ffgTypedefs.h'. Many of the elements of both
structures have their memory allocated dynamically and therefore there is a corresponding freeing
of this memory undertaken as a part of the function f f gexit () .
The following subsections detail various aspects of the program structure in greater detail.

1 For those unfamiliar with C programming, a data structure is a collection of many variables which are stored
and may be passed to functions by referencing a single name. In Fortran, the only comparable feature is the
common block, and in Pascal a similar feature is the record.

10

Figure 2. Basic Program Structure of ffgView

11

4.1 Initialising the Graphics
The following steps are undertaken to initialise the graphics:

• A call to the function init_graphics() is made, which in turn calls
init_window (), init_view (), queue_devices (), and the two functions which
control the initialising of the lighting model, def_simple_light_calc () and
use_simple_light_calc().

• init_window () opens the graphics window.

• ini t_vi ew () sets the perspective or orthogonal viewing factors to their initial values
and sets the initial viewing angle. The viewing distance may later be adjusted by the user
invoking the 'SCALE' option (section 3.2).

• queue_devices () queues each of the devices required by ffgView. These include the
mouse buttons and cursor locations, keyboard keys, and the window controlling events.

• def_simple_light_calc() and use_simple_light_calc () initialise the
lighting model and define the positions and colours of any light sources which illuminate
the frigate.

4.2 Dynamic Memory Allocation
Because ffg View requires between thirty and several thousand velocity vectors to be displayed, it
is efficient to allocate the memory required for storing the data at run time. Thus the dynamic
allocation of memory becomes important at several stages of program execution. Memory is
dynamically allocated for both the data concerned with the drawing of the frigate and the velocity
vector data. Primarily, this is achieved by defining data structures which contain pointers to
memory that is allocated when the size requirements ofthat memory are known.

4.2.1 Frigate Data Structure
The frigate geometry data structure is defined in Tfgtypedefs.h' as follows :

typedef struct {
Coord x;

Coord y;

Coord z;

) Point3d;

typedef struct {
short nsides;

short *pnts;

} Polygon;

typedef struct {
char object_nam=[40];
short num_vertices;

short num_polygons;

Point3d *vert;
Point3d *norm;

Point3d *gnorm;

Polygon *poly;

} model;

During execution, the geometry data are read in and when the numbers of polygons and vertices
are known, the storage for the geometry data is allocated. The single structure model (the third
structure shown in 'ffgTypedefs.h') contains most of the information required to draw the frigate.

12

4.2.2 Velocity Vector Data Structure
The velocity vector information structure is defined in 'ffgTypedefs.h' as follows

typedef struct
char vect_file_name[40];

short numvectors;

float free_jx;

float free_y;
float free_velocity;

float free_yaw_angle;

Boolean *draw_this_one;

float *vel_nag;
Point3d *vel_orig;

Point3d *vel_x;
P3int3d *vel_y;
Point3d *vel_z;
Point3d *vel_xyz;

Point3d *vel_l;

Point3d *vel_2;

Etoint3d *vel_3;

int *x_layer;

int *y_layer;

int *z_layer;
} Velocity_vector_data;

In a similar way to the frigate geometry data structure, data storage for the velocity vectors is
allocated in memory once the number of velocity vectors is known. Several variables are set for
each different velocity vector and so they must all be assigned memory dynamically. For each
velocity vector, the following variables are required (some of these are read from the data file,
some are calculated):
draw_this_one is a boolean variable which controls whether or not that particular vector will
be drawn. This vector is originally set to true so that all vectors are drawn, but may be set to false
during the execution of the program so that not all vectors are drawn.

x_layer, y_layer, and z_layer are three integers which are set to values that are read from
the data file. These three variables store the layer numbers in which the data point occurs.

vel_orig is a structure of type point3d and stores the location in x, y, z space of the point at
which that particular velocity is known.
vel_xy z is a structure of type point3d which stores the location in three-dimensional space of
the end of the velocity vector. This is calculated by reading in the components of velocity for the
point concerned and then scaling them to fit the grid and translating them to the correct location.

vel_l, vel_2, vel_3, vel_x, vel_y, and vel_z are used by the program for drawing
arrow heads on the vectors and for scaling all vectors to be the same length.

4.3 Frigate Drawing Axes
The frigate drawing axes are as shown in Fig. 3. This axes set was chosen for ease of preparing
the geometry file for drawing the frigate. It does not align with the axes set used to define the
velocity directions in either the full scale or the wind tunnel data collections. These axes sets are
shown for comparison in Appendix C. When converting the raw data to the format required by
ffgView, it is necessary to apply coordinate transformations as dictated by these axes. This is
discussed in Appendix C. The programs which perform these data manipulations and axes
transformations are described in Appendix A.

13

Origin at bullseye on flight deck

Figure 3. Drawing Axes

4.4 Frigate Geometry File
The geometry file which contains the information required by ffgView for drawing the frigate was
composed in the axis system shown in Fig. 3. The values were obtained from scale drawings
(Ref. 5) and photographs and are measured in feet. The deck and hangar markings are drawn as
separate polygons that sit slightly above their respective surfaces. The Phalanx system was
originally drawn as a separate entity and then included into the frigate geometry file. A geometry
file for the Phalanx system alone exists should it be required for a future project.
Comment statements are included in the data file and should make the geometry file relatively easy
to modify. The comments are lines that begin with a '%'. They are ignored by the program when
it reads the geometry file.

4.5 Frigate Colour Information
The frigate is given colour during the drawing process by defining material types from which the
polygons will be composed. These polygons then respond to the lighting model to produce the
required colours and surface effects.
The material types used to compose the frigate are defined in the C language in 'ffgMaterials.h' as
follows:

float material_l[]=
SPECULAR, 1.0, 1.0, 1.0,
DIFFUSE, 1.0, 1.0, 1.0,
SHININESS,1.0,
AMBIENT, 1.0, 1.0, 1.0,
LMNULL

float rraterial_5 [] = {
SPECULAR, 0.1, 0.1, 0.1,
DIFFUSE, 0.1, 0.1, 0.1,
SHININESS,100.0,
AMBIENT, 0.1, 0.1, 0.1,
LMNULL

14

float rraterial_6[] = {
SPECULAR, 0.35, 0.00, 0.00,
DIFFUSE, 0.35, 0.00, 0.00,
SHININESS, 100.0,
AMBIENT, 0.35, 0.00, 0.00,
1MNULL

};
float itaterial_7 [] = {

ALPHA, 0.6,
SPECULAR, 0.20, 0.20, 0.20,
DIFFUSE, 0.20, 0.20, 0.20,
SHININESS,100.0,
AMBIENT, 0.20, 0.20, 0.20,

LMNULL

};

float rraterial_8[]= {
SPECULAR, 0.80, 0.80, 0.80,

DIFFUSE, 0.80, 0.80, 0.80,

SHININESS,100.0,
AMBIENT, 0.80, 0.80, 0.80,

LMNULL

};

These materials are defined by their shininess and by three other properties (specular, diffuse, and
ambient) which provide information as to the manner in which they reflect light (for more detail
see Ref. 8). These properties are controlled by three floats (having a value between 0 and 1)
which define the fraction of red, green, and blue light respectively, associated with that property.
For instance material_l (above) is a purely white material since all three floats have a value of
1. This material is used for the deck markings.
It should be noted that material_7 is slightly different in that it has an additional value defined
by the word ALPHA and that this is set to 0.6. This material is the one used to colour the
polygons which comprise the safety nets around the sides of the flight deck of the frigate. In
order to retain a 'net-like' look, these polygons are made to appear translucent. The degree of
translucency is controlled by the ALPHA value where 0.0 is totally transparent and 1.0 is totally
opaque. Thus the nets appear to have a translucent grey colour. As can be seen in Appendix B,
the bottom of the hull may be seen through the 'nets'.

4.6 Drawing the Data Entry Boxes
The data entry boxes which are required for entering file names and viewing angles are drawn in
the overlay planes. Most SG machines have designated memory which is known as the overlay
planes. Overlay planes are areas into which it is possible to perform limited drawing which, when
erased or altered, leaves the image underneath intact. Commonly, the overlay planes are used for
drawing pop up menus or other similar items which are temporary and do not require complex
drawing techniques. This process is initiated by calling the function overdraw (). The
limitation of overlay mode is that there is a restriction of only two different colours. For the
purposes of data entry, this restriction is acceptable and the overlay planes have the advantage that
the data entry box can be erased, revealing the original drawing underneath without requiring a
redraw.

4.7 Drawing the Velocity Vectors
The data file which is used byffg View to draw the velocity vectors contains information as to the
x, y, z position of a particular vector and the x, y, z components of velocity at that point. This
information is read in by the program, scaled, and then stored in the dynamically allocated
memory as discussed above. The function which draws the vectors is draw_vel_vectors in
the file 'ffgMain.c'.
The value of vvd->draw_this_one [i] is first tested for each vector. If it is true, the vector
is drawn. If this variable is false the vector will not be drawn and the following steps are ignored.

The vector is tested for size by comparing the variable vvd->vel_mag [i] with
vel_mag_max. Depending upon this value, a call to a SG function c3 f () will be made to

15

change the colour to that which is appropriate for its magnitude. The program then checks on the
status of a number of variables which will determine the nature of the vectors to be drawn. This
includes the option to draw the vectors with and without arrow heads and to have all of the vectors
the same length rather than the default, which has them scaled according to their relative
magnitude.

The vectors, including the arrow-heads if required, are then drawn with a simple series of move
and draw commands.

4.8 Drawing the Information/Menu Screens

The view of the frigate and the velocity vectors is drawn in three dimensional space. When it is
necessary to draw a flat menu screen or an information screen, it is much easier and preferable to
draw these in a separate two-dimensional axes system. This is performed by saving a copy of the
viewing matrix and the projection matrix that were used for the three-dimensional drawing and
then making a call to the ortho2 () function, which allows us to define a two-dimensional co-
ordinate system in which to draw. After the two dimensional drawing is finished, the projection
and viewing matrices are reinstated by calling the function pushmatrix ().

4.9 The Lighting Model
In much the same way as materials are defined, it is possible to define lights of a certain colour at
various locations in order to provide lighting for viewing the object. Further details on lighting
models may be found in Ref. 8.

For ffgView, the lighting model currently appears as :

float local_\«toite_light [] =

{
LCOLOR, 1.0, 1.0, 1.0,
POSITION, -l.o, l.o, l.o, o.o,
LMNULL

};

float local_Wiite_light_2 [] =

{
LCOLDR, 1.0, 1.0, 1.0,
POSITION, 1.0, -1.0, 1.0, 0.0,
LMNULL

};

These are defined in 'ffgMaterials.h' and are utilised in the file 'ffglnit.c'.

4.10 Mouse and Keyboard Inputs
The control of mouse and keyboard inputs is handled by the function, process_event (),
which takes an event from the event queue and then decides how to process that event. If the left
mouse button is clicked, the program will check to see if the cursor is over the menu area. If it is,
then control will be passed to the function icon_control () which will decide upon the action
to take according to which icon was clicked. If the left mouse button is not over the menu area,
then the input will cause the image to be rotated or scaled as described in Section 3.1. Those keys
listed in Table 1 will also enter the event queue and will be handled by the function
process_event().

4.11 Exiting ffgView

Exiting ffgView is initiated by calling a function f fgexit (). This in turn calls four other
functions. The first two of these are SG functions, gexit () and greset (), which shut down
the graphics in an orderly fashion. The second two, f ree_malloced_velocity_stuf f
and free_malloced_geometry_stuf f, are functions contained in the source which are
responsible for freeing up any of the dynamically allocated memory.

16

5. CONCLUDING REMARKS
The frigate airwake viewer is successfully running on an SG workstation. It has already proved
useful in the early analysis of available data and will continue to be an important tool for a variety
of analysis tasks within Air Operations Division. The colour images, created by ffg View, of wind
vectors about an FFG-7 may be printed and used for presentations, reports, or closer inspection.

With modification the program could be used for a wider variety of tasks than the specialised
frigate airwake analysis for which it is currently being used.

REFERENCES
1. Arney, A. M., Blackwell, J., Erm, L. P., and Gilbert, N. E., "A Review of Australian

Activity on Modelling the Helicopter/Ship Dynamic Interface," AGARD Conference
Proceedings 509, Aircraft Ship Operations, Paper No. 20, Seville, Spain, November 1991.

2. Arney, A. M., "FFG-7 Ship Motion and Airwake Trial: Part I - Data Processing
Procedures," DSTO Technical Report 0039, Defence Science and Technology Organisation,
Department of Defence, Australia, July 1994.

3. Matheson, N., "A review of the Airflow About a 1/64 Scale FFG-7 Frigate Model and
Correlation with Full Scale Results," Proceedings of the Eleventh Australasian Fluid
Mechanics Conference, Vol. I, pp. 655-658, Hobart, Australia, December 1992.

4. Muscat, R., "Geometry File Viewer," Source code listing (Unpublished) , Studies and
Simulation Group, DSTO Aeronautical Research Laboratory, March 1992.

5. "ABR 5419 Ship Helicopter Operations Manual Volume 1," Defence Instruction (Navy),
Department of Defence (Navy Office), Canberra, Australia, April 1992.

6. Blunt, D. M., "The Conversion of a Fortran Data Plotting Program Using DI-3000
Graphics to Operation on a Macintosh Personal Computer," DSTO Aeronautical Research
Laboratory Flight Mechanics TM 446, Melbourne, Australia, September 1991.

7. Blunt, D. M., "Relative Wind Measurements on an FFG-7 Class Frigate," DSTO
Aeronautical Research Laboratory Flight Mechanics TM 447, Melbourne, Australia,
September 1991.

8. McLendon, P., Graphics Library Programming Guide, Document Number 007-1210-050,
Silicon Graphics, Inc., Mountain View, California, USA, 1992.

17

APPENDIX A - Utility Programs Associated With ffgView

There are three programs which accompany ffgView. They are used for the analysis and
reduction of data from its original collected form (either wind tunnel or full scale ship trial) to the
format required by ffgView. These programs, readcol, FFGWake, and windcomp, are described
below in some detail.
Data from the ship trial exists in the form of '.COL' files. These files contain time history data
recorded on board the ship on a number of channels (Ref. 2). A program was developed to read
this type of file, to extract the relevant information from it, and to write it in a more manageable
form. This program, readcol, produces an '.out' file which is typically an order of magnitude
smaller than the '.COL' file. Means and standard deviations are also calculated for the extracted
data and written to a file specified by the user as discussed further below.

Data from the wind tunnel tests are recorded in ASCII files with a '.GR1' extension. These files
are small in comparison with the ship trial data, as the wind tunnel recordings are static time
averaged values and consist of only a single value at each location.

FFGWake is a program which will read both the '.GR1' files from the wind tunnel testing and the
'.out' files output from readcol for the ship trial testing. FFGWake outputs a file which is read
by ffgView and contains all of the information necessary for the display of vectors over the deck
of the frigate.
Program windcomp creates a 'Comparison' type data file, containing wind tunnel data and a
single full scale data file, that can then be displayed using ffgView. This form of 'Comparison'
file contains a reduced set of wind tunnel data which only includes data that is directly comparable
with full scale data. 'Comparison' files created by editing full scale data files, rather than by using
windcomp, contain complete data sets.
The utility programs were written in Fortran in order to maintain compatibility with existing
programs such as MacShipRefine and MacTRANS (Ref. 6) which are coded in Fortran. These
utilities contain no SG intrinsics and should be portable to virtually any platform.

Program readcol
The '.COL files produced by MacTRANS 1 are often large and formatted for output to a printer so
that they include page headers and page breaks. For many applications, it is required to read the
data into another program, e.g. ffgView. Having a file which is irregularly filled with text makes
this difficult and so readcol was written to extract any required data and output the data in
unbroken column format. At present the program will extract only the data which is of relevance
to the production of velocity vectors over the aft of the FFG. However, the program may easily
be adapted to extract different information, as outlined further below. Thirteen '.COL' files, one
for each mobile anemometer position used in the trials (Ref. 2), typically contain the data for one
specific relative wind condition. Having extracted the information from one '.COL' file, readcol
then calculates the averages and standard deviations of the required data (Ref. 7), and prompts the
user for another input file. When all the '.COL' files have been processed, the user is prompted
for a filename which will contain the statistical information.

A '.COL' file contains many channels of data arranged in five columns with a header on every
page. A typical full scale airwake '.COL' file will contain more than fifty channels of data ordered
from 1 to 57 (for example) in 11 sections with five columns and one section of two columns. A
sample of a truncated '.COL' file is shown in Fig. Al. Note that non-varying block values (data
that is constant over the entire recording) are shown at the beginning of the '.COL' file.

As a part of the header information contained within the '.COL' file, a number (shown in Fig. Al
as the BLK NUMBER) is given which corresponds to the channel upon which those data were
collected. This number is above the column of data on each page. It is this number which the
program will search for in order to extract the appropriate data.

1 MacTRANS is a utility program converted to run on Macintosh computers (Ref. 6).

Al

The data required for the display of wind velocities include the velocities from the nine
anemometers on the mast, and the data collected from the ship reference anemometer and the aft
main reference anemometer (see Ref. 2 for more detail). The mobile anemometer velocity data
were collected on channels 41 through 49 inclusive. The ship reference anemometer data were
collected on channels 53 and 54. The aft reference anemometer was output to channels 31 and 32.
An array of characters (named f indthese) is set up with a list of these channels.

1 Wind 90deg, 7kn - Position 4

File 18091617 (filtered)

RECORDED CN 01-MAR-93 AT 10:07:58 INT33N INT = 0.0000E+00

RUN CPU TIME = 1 MIN. 0.00 SEC.

NON-VARYING BLOCK VALUES

BLK NUMBER 33 34 35 36 37

Wind Dim Wind Dim wind Dim Wind Dim Wind Dim

Top (1) Top (2) Top (3) Mid (4) Mid (5)

1.0000E+00 0.OOOOE+00 0.0000E+O0 1.0000E+00 0.O000E+00

BLK NUMBER 38 50 55 ' 56 57

Wind Dim Exact BLK# BLK# Drop out

Mid (6 Start Time Factor

O.000OE+00 O.OOOOE+00 0.0000E+00 0.0000E+00 5.0000E-01

BLK NUMBER 58

BLK»

O.OOO0E+00

1 Wind 90deg, 7kn - Position 4

File 18091617 (filtered)

RECORDED CN 01-MAR-93 AT 10:07:58 INTB3N TNT = 0.0000E+00
RUN CPU TIME = 1 MIN. 0.00 SEC.

BLK NUMBER

Time

(s)

0.0000E+00

5.0000E-02

1.0000E-01

1.5000E-01

2.0000E-01

2.5000E-01

Wind Dim

Low (9)

2.4898E-01

2.4410E-01

2.4410E-01

2.4654E-01

2.4166E-01

2.4654E-01

Roll Ace

(deg/s/s)

0.OOO0E+O0

-3.4761E-02

-4.8213E-02

-6.1952E-02

-7.4663E-02

-8.5279E-02

Pitch Ace

(deg/s/s)

O.000OE+0O

5.4870E-02

7.0716E-02

8.0372E-02

8.2162E-02

7.6593E-02

Yaw Ace

(deg/s/s)

O.00O0E+O0

5.7887E-02

7.6894E-02

9.2193E-02

1.0177E-01

1.0477E-01

Pitch Att

(deg)

-7.1822E-01

-7.1542E-01

-7.1166E-01

-7.0707E-01

-7.0186E-01

-6.9627E-01

1 BLK NUMBER

Time

(s)

2.5500E+00

2.6000E+00

2.6500E+00

2.7000E+00

2.7500E+00

Wind Dim

Low (9)

2.4166E-01

2.4166E-01

2.4410E-01

2.3922E-01

2.4166E-01

2

Roll Ace

(deg/s/s)

1.9184E-02

1.0518E-02

4.4375E-03

1.7225E-03

2.8623E-03

Pitch Ace

(deg/s/s)

-5.9375E-02

-5.6743E-02

-5.5130E-02

-5.5204E-02

-5.7704E-02

Yaw Ace

(deg/s/s)

2.5927E-02

2.5190E-02

2.3641E-02

2.1442E-02

1.9097E-02

Pitch Att

(deg)

-4.5140E-01

-4.5821E-01

-4.6662E-01

-4.7621E-01

-4.8656E-01

Figure Al. Sample '.COL' file

A2

An example of the execution of readcol is shown below. The user inputs are in bold type.

% readcol
Input the filename: ../data/test.COL
Which anemometer location was this recorded at ? 2
Executing

Do you want another run (y/n) ? n
Enter file name to contain statistical results: test

A sample output 'test.out' file from the above example is shown in Fig. A2. Columns one
through nine in Fig. A2 contain the data from the anemometer mast which were collected on
channels 41 through 49 respectively. Columns eleven and twelve contain data from the ship
reference anemometer and the final two columns contain data from the aft reference anemometer.
For the example above the statistical data are written to files 'test.l' and 'test.2' (Figs A3 and A4).
File 'test.1' contains the means and standard deviations of data from the extracted channels. The
mobile anemometer velocities are measured as individual components in the xyz axes, but the ship
reference anemometer and the aft reference anemometer measured the total velocity magnitude in
the xy plane and the direction. Program readcol resolves the mobile anemometer data into a total
velocity vector as well as a velocity vector in the xy plane, with appropriate direction, and outputs
the statistics to file 'test.2'. More detailed information on this process is given in Ref. 7.
There have been many trials involving data collection which have yielded '.COL' files. The data
recording of airflow around RAN frigates is just one example. It was considered desirable that
readcol be non-specific, enabling it to be used for a wide variety of purposes. Should it be
necessary to extract data from a '.COL' file from some other trial and for some other purpose it is
a simple matter to modify the values contained within the f indthese array.

Program FFGWake
Program FFGWake reads either the '.out' file output by readcol, or the raw wind tunnel data
'.GR1' file and converts the information to the format required by ffgView. For the case of the
full scale data which were recorded as time histories, a part of the processing involves the data
being averaged over time to give a single final value.
The functioning of FFGWake is controlled by a single input file which must have the name
'FFG_input.dat'. The first line of this file is the type of data, either 'Shiptrial' or 'Windtunnel'.
For the 'Shiptrial' type, the second line is the number of data files to be analysed and the
remaining lines are the names of the data files. For the Windtunnel' type, the second line is the
tunnel reference velocity and yaw angle, the third line is the number of data files to be analysed,
and the remaining lines are the names of the data files.

A3

N N N
? ? 5
U Ui 111
m ■«<• d
91 oo to
rH «H r-i

S S S
iH rH TH

? ? ?
HI UJ 1U
oi Oi oo
to o in
(M (SI (SJ

OS®
»H iH iH

? ? ?
UJ UJ UJ
ID to oa
d d H
ro m ro

N N N

? ? ?
UJ UJ UJ
10 tO 10

SOS

? ? ?
■JJ UJ UJ
o r- 3;
ro ro TJ-
in in i/i

oss JS

^1 rH ^i fa

? ? ? ~
 3 o

■a
Vi

LU UJ
to r- co
N (M N
•* * ■♦

? ? ? a»
Tj- Tt TH
O S <-H

? ? ?
UJ UJ UJ
*-t ro ro
rH o rH
N (M N

«a

<
I.
a

? ? ?
UJ UJ UJ
in *H «H
01 tO in
N N N

/~./^i
a. en

■H V
J: T3
VI W

vy
l~\r^ •I-*
CL Ol in i/i m

•H V to 0- <JI
j= -o r^ ro
V) V r\rs •
V r-{ CL c •*
■ H i •r" ^
l/l J: S^

CL V)

/">/-N (SI > oo
CL C ffi r--

•H .* in in
-C vy r\r\
i/i s 4- Ol O

V»/ rH 11 V
> L. t3

■H
^s^-s ■* VI (SI
M- O) |s. CL t-i
V o ■<f r^-
L. T3 r\s-\ •
v_/V r^ U- V) m
>pj U X (S|
to L. V

CL

U- vi
oi
oo

in
(SI

V \ in *H
L. +> AA

> V
(SI ¥ vi

•- .+'
S w

o

AA m in
S "1 m to
5 v. to ■<«•

r-- +> /-\/^>
Gt*- s S J" ro a> S w o \

E
/~V/^S Ol •* r%
S W in Oi TH
O X •*• ^-\/^\ in *J
Gt4-
> v

S

3 V^

m

^^ in ^f
5 w 00 TH "5< o \ (SI 'f E r-- +> r\rs
w4-
3 Sy*

(M T3 V) (SI
E .+1 V3 v^t*.
S w ,

/"»/^ oi 00 fi
T3 V) s

in
m
o <C

E +> /-\r\
ÖU- S TI W rH u
S w

v^t*. 3
.2? ^~\ ^ tc m r_

T3 10 *H to >*^
•H \ **- en
E +> ^>/^>
v5t^ rM ■a vi (SI
> v •r' \

3 V^>
/■s<"t ^ 'il-
"O V) in ls.
•H \ 00 <sl
E +> /-^/^>
W4- in CL VI ro
3 _/ t O V»

/"»«'"N INI |s.
CL VI oi ■f
O V ro to

+> -P • /-\^
Vv-U- s CL VI rH
S w 1

V)
c
0

O \

V->t4-
> s^

(^CS ro ■H (SI
CL VI 00 +> m
O "s. m a to
+> +> • ■H /-M--1
Wt4- in > CL VI (SI
> V

o

T3

O \
+> +>
V^t4_
3 v-(

/-\r>. (SI L. m
CL vi m a TH
O -N» (SI TJ £ (SI

+> +> c —
sv<+- to a V) m
3 <w-

i
+>
in

O

vi II c c ! - ISI (SI
a vi
<u il o
Z II o.

^^ +>
L. /^,
u □) (SI
> V C*-

s_/-0 <H
M S^
1/1 in a. ^

r\
N
J- /-s (SI
0 Ol m

JZ «> to
V/T3 •

S M s^> oo
O m to
_i a.

1

^^^^
N V)
L. \ o
0 -P m

JZ 4- ro
^J\^ > (SI

s*>r\
+J VI
O -s. m

+> +> vH
Wt*- •*
> vy

(SI

L. /*"-, is.
V Cl m
> «) 00
vo
M ^y- ■*
1/1
a.

/-\
N ,-1
1- /^S S
O C31 to

J= 4>
QUTI ro
M M V »H
Z tn i

a.

/~\/~\
N V) O
L. \ (SI
O -M S

JC t4-
'w'S^ to >
r^/~\
+1 V) (SI
O V. -a-

+J +" o
wu-
> v^ to

Si
E

E
«a

ITJ

u
s
fcjj

/—\
+J
L. ^S is.
11 Ol S
> 1) ro

WTJ
M V TH
m 1
0.

/^>
N o
L. /^, to
O Ol 01

JC V »
WTJ oo
M s-> r-\
tn 1

n. Q.
c:
i-

<^>/-s ^~
N VI oo
L. \ «H
O +>

JC t+- is.
wu ^ >
/-s/-\ 01
4J VI oo
O *s. r-t

+> 4J svt*. |S-

> V T-l

VI ii c (SI
c ii M

o I! VI
11 o
£ ii 0.

M /~\ in
m Ol to
CL V r--

T3
s^ rM

> n
j*
s^<

(SI
Ol
in

S

M /^> •*
tn Ol |s-
CL V ■*

T3
s> r^

/^\ Ol
V) oo

> X in
+>
M- (SI
\y

V)
o

CL

A4

Example input files are shown in Figs. A5 and A6 for full scale and wind tunnel data respectively
(comments not included in the actual data file are shown in italics). The input file of Fig. A5 will
cause FFGWake to analyse 13 full scale data files with the names as shown. The order in which
the files are placed in the list is unimportant as each file contains the station at which those data
were recorded.

SHTPTRIAL Type of data file
13 Number of files to analyse
/i^r/pecple2/firaanH/aij^ra]<E/<fete/shiptriaL/ool/18091420.cxit File names
/usr/pecple2/&nlarrH/airaakE/<feta/shdptrial/c»l/18091424.out
/usr/pecple2/fiTaam/ai^Aake/dato/shiptxial/<x»l/18091428.out
/usr/pe^le2/firOara/airva]<e/cfete/shiptrial/CDl/18091432 .out
/usr/people2/firü^nH/airva]<e/date/shiptirial/cDl/18091435. out
/usr/people2/:fonlaira/ai^^ . out
/usr/pecple2/firlarta/aij^Bte/cfet3/sliiptrial/aol/18091443. out
/usr/pecple2/firilarra/aij^a]<B/cfet3/shiptriaL/ool/18091446. out
/usr/people2/fi^üattH/aizvB]<B/a^t3/slTLptulal/ool/18091452.out
/usr/pecple2/fi^aira/aij^akE/cfeto/shiptrial/col/18091455.out
/usr/pecple2/fiiTlam/aixwate/öato/shiptrial/ool/18091458. out
/usr/pecple2/&nlarrH/aij^a]<B/aata/shiptrial/aol/18091502. out
/usr/pecple2/firaanfB/aij^akE/<^t3/shiptrial/ool/18091505.out

Figure A5. Sample Input File for Ship Trial Data

WINDIUSNEL Type of data file
50.0 15.0 Velocity & yaw angle
12 Number of files to analyse
/usr/pecple2/fiTaarta/airvrate/ö^te/vdrdtunnel/fn01yl5.grl Filenames
/usr/pecple2/Ml^na/aij^ate/dat3/v7irx±urriel/f^0yl5.grl The first number specifies the
/usr/people2/fi^am/air*ate/dato/vdn±unrel/^lyl5.grl location of the wind tunnel
/usr/pecple2/ötlartH/aij^ate/data/vdn±unnel/^2yl5.grl probe with the n or p
/usr/pecple2/firilanra/aixvake/a^ta/wirdtunnel/fp03yl5.grl indicating negative or positive.
/usr/pecple2/&nlata/aij^akB/(^ta/wiixtunnel/ft)04yl5.grl The second number is the yaw angle.
/usr/p9cple2/MLamra/aixv«]<B/aate/win±unnel/fp05yl5. grl
/usr/paople2/fmlartH/aij^a]<B/aate/wiiidtunnel/fp06yl5 .grl
/usr/pacple2/fiTlarra/aij^B]<E/date/windtanni^l/fp08yl5 .grl
/usr/pecpleS/f^ama/airwate/data^
/usr/pacple2/&nlarra/aii^0te/date/vdridtunrel/fpl4yl5. grl
/usr/pecple2/fmlarra/airwate/o^te/win±unnel/fpl8yl5. grl

Figure A6. Sample Input File for Wind Tunnel Data

For the case of wind tunnel data, FFGWake reads the data and transforms it from wind tunnel
axes to the axes system used by ffgView (App. C). For full scale data, FFGwake reads the data,
averages the velocities over time (as described in Ref. 7), then transforms it from ship axes to the
required axes system.

To run the program type FFGWake at the prompt and the program will run requiring no input
from the user. The resulting output file, named 'ffg_vel_vectors\ contains the desired data in the
format required by ffgView.

Program WindComp

Windcomp is a program which analyses a wind tunnel data file as output by FFGWake and
performs a series of interpolations and data reductions to allow a direct comparison with data from
the full scale ship trials. The data points at which data were collected in the wind tunnel seldom
correspond with data collection points from the full scale ship trial tests. The wind tunnel probe
collected data at points on a grid fixed with respect to the wind tunnel and so, except for the case

A5

where the wind tunnel model was at zero yaw, there is no direct comparison available between the
wind tunnel data and the full scale data.

Program Windcomp processes the wind tunnel data in the following way. For the full scale data
there are thirteen anemometer positions, with velocity measurements at three heights for each
position. The wind tunnel grid has measurements at heights corresponding to each of the full
scale anemometer positions and since the wind tunnel grid is denser than the full scale data grid
(Fig. A7), the wind tunnel data is interpolated (in the horizontal plane) to a position which
matches each of the full scale data points.

The program finds the four closest wind tunnel data points to the anemometer location under
consideration. First, the closest wind tunnel data point is determined, then the three other data
points are found which form a rectangle enclosing the anemometer location (Fig. A7). If wind
tunnel data is unavailable (due to the inability of the probe to measure the flow)1 no interpolation
will be attempted. Otherwise a two dimensional linear interpolation will be applied.

+
Interpolation possible here

Four points exist

+ +

Wind tunnel data missing
at this point + +

I I / I No interpolation possible for

+ this anemometer location

+
Legend

O Anemometer Location

+ Wind Tunnel Data Grid

Figure A7. Interpolating Data from Wind Tunnel Data at Corresponding
Anemometer Locations

To execute the program simply type windcomp at the prompt. The program will prompt for the
yaw angle at which the wind tunnel data were recorded. The program will then look to read two
files. These must be output files from FFGWake for full scale data and wind tunnel data renamed
'ffg_ship' and 'ffg_wind respectively .
The program reads the data from these two files, processes the data, then writes a file called
'comp.vec' which contains the full scale data together with the data which has been interpolated
from the wind tunnel results This data file is a 'Comparison' data file as described in Section
2.1.2.

1 The pressure probes used for the wind tunnel data collection were calibrated only up to 40° and this limits the
collection of reliable data, especially in the region of the flight deck where the presence of vortices creates
regions of flow that are often at angles greater than this.

A6

APPENDIX B - Sample Output From ffgView

L W r-
o

u ~> cst a
W W CO *—

z z ■ jj a n
a o a - a

CD K H
H a

K
K =3

Ui
2.; a i w z at- t/> 1 -s Z W a Q. ** t ~ 2 s ** r- a C r-

ei l W4 ™* 'A. "0 C2 u — -•
CD 0 -H

üJ H U L. S£
cn z; -j W Z 3 lü H Ä D ÜJ LU u: 3 C C -w

1 m H G= GC
a a c CJ QE K - J C r r r a: -r -

a w "— er

U.
■ ■-.V 'x': SKS 1 ; »- ill 1 s

z u r^ c
to

a «
CD n

m o
0) « a> T" tu *. 2 3

o. *-
35 H- •" - L 3 t = S

c CD C V c a
X « X 0) X CD c T n a to

ü- U- 3 > Z r E

W-H— O
or —T3 t-
uj u a t/3
=> 3 c a

09

H

1
3

es
o
Ä
R
*J
C/2
o

s o
kl
to
B

*n
<*>
"ö e

"■3
a

04

Bl

• *

"" cc

H
7"
LÜ
r

3 us
C 7 _f
\- <E
O OS V-J
cr i~ tc

»

CO
a
o

" S S
0 CT
c^ a.

w

| tJ a
r a: I*.- uj
ft «B ~ Q = — x a:

CCX £
£ U. U. to =

= 3 ui h £
2 =0:0: =
~ 0: — _J c
£ 0 a ü. ^

03
Z
O i/i

1-
0.

a.

O
1-
GT 03

u U. U-: *-
LiJ z U- H-

Q
■■*: K 1-

O UJ UJ LJ 3
-r, CD -1 := a

t- aa

CD
3 _J L. 0 a:

s fli Ü ■?::«

« v~
Cfl ^
UJ
cr

UJ CO
7" 0

« cc 71
JT a.
■-■ 1 f"

1- UJ ~i cr z: Z)

tr
GV ca

1» * LJ jt
& S"

a
r» cc
c^ en

a
m a

a a
a n
a a

h-
i. a L in

e <-
O 0 CM
a. u

ai c +*
j u u. O £
u c C -H

s a — 3
4^ — C
w c u —

u C N
Q Cfl — ee

u
§

s
e o
N

•c
£
•Si
"3D g
•^-^
*J

a
H
"3
a
c
s
H
-O
B

o
Pu,
o

/ / /

/ / / M

/ ' /

/ !

vs
UJ

1- cc T CM a CD UP v CM *-
U CO CD 0) CM m r^ a CD CD 0)

10 m L/l ^ Cl m CSJ

U
E

L

ft/
S

)
ev

el

1 1 1 1

r.
UJ ~-'_l

CM m n- a m CO en
cc N in m <r co P3 CM •"
tr

cc ■ ■ ■ II ■ ■ ■

z £ 3)
s a
0 s

a a

■ • 0 = a> *■ O O
a *~

c 5 c £ »— £ "° L 3 "= 5 CD

3 r X « C
00 C3 3 03

L_ u_ =t > 2 z: r

O
O
ro
T3
C

93 £
C
03

eu
>
*J

CC S3
a _J V

N 3)
cr Pi

C CD Cfl

CO t. cc c*
01 , P5
-CJCC

n 3) 3)
E
3

0 u
• ja ja O

J3 ä
Z C 0 W

fe DO)« C

Crt-M — O
a:^T3 t- !«
=> 3 E a

3
ai

2
CD *.
*"

«?J'

B2

APPENDIX C - Axes Systems Used by ffgView
There are a total of three axes systems used in the generation and displaying of data for and by
ffgView. The axes system used by the program for all of its drawing and rotations/translations is
shown in Fig. 3. It is necessary that the velocities provided to ffgView correspond to this axes
system. Figs Cl and C2 below show the axes systems for the wind tunnel tests and for the full
scale trials respectively. Note that the axes system used for the wind tunnel data collection has the
xy plane parallel to the flight deck with the origin at the centre of the hangar wall at a height above
the flight deck equivalent to three feet full scale. A program FFGWake, described in Appendix A,
has been written to perform the conversions from the axes sets below to that shown in Fig. 3.
A fundamental difference between the two types of collected data exists. The axes system for the
full scale data is aligned with the ship whereas the axis system for the wind tunnel data is aligned
with the wind and so corrections for the yaw angle must be included.

Origin at centre of hangar wall
equivalent full scale

height of 3 ft above deck

Centreline

Figure Cl. Axes System for Wind Tunnel Data Collection

Origin at bullseye

Centreline

Figure C2. Axes System for Full Scale Data Collection

Cl

FFG-7 Class Frigate Airwake Viewer

C. A. Heinze and A. M. Arney

DSTO-TR-0048

DISTRIBUTION

AUSTRALIA

DEFENCE ORGANISATION

Defence Science and Technology Organisation

Chief Defence Scientist 1
FAS Science Policy f shared copy
AS Science Corporate Management J
Counsellor Defence Science, London (Doc Data Sheet only)
Counsellor Defence Science, Washington (Doc Data Sheet only)
Senior Defence Scientific Adviser (Doc Data Sheet only)
Scientific Advisor Policy and Command (Doc Data Sheet only)
Navy Scientific Adviser
Scientific Adviser - Army (Doc Data Sheet only)
Air Force Scientific Adviser (Doc Data Sheet only)
Director Trials

Aeronautical and Maritime Research Laboratory
Director
Library Fishermens Bend
Library Maribyrnong
Chief Air Operations Division
Chief Airframes and Engines Division
Research Leader AEW&C
Research Leader Aircraft Performance
Research Leader Flight Systems
Research Leader Human Factors
Head Helicopter Operations (6 copies)
Authors: CA. Heinze (2 copies)

A.M. Arney (2 copies)
J.F. Harvey
N. Matheson
B. Phelps

Electronics and Surveillance Research Laboratory
Director
Main Library - DSTO Salisbury

Defence Central

OIC TRS, Defence Central Library
Document Exchange Centre, DSTIC (8 copies)
Defence Intelligence Organisation
Library, Defence Signals Directorate (Doc Data Sheet Only)

Navy

Aircraft Maintenance and Flight Trials Unit
Director Aircraft Engineering - Navy
Director of Aviation Projects - Navy
Director of Naval Architecture
Director of Occupational Health and Saftey and Naval Medicine
CO HMAS Albatross
CO HMAS Cerberus
Office of Naval Attache, Washington
RAN Tactical School, Library
Superintendent, Naval Aircraft Logistics

Army

CO 5 RGT, Townsville
Engineering Development Establishment, Library
School of Army Aviation, Oakey

Air Force

Aircraft Research and Development Unit
Tech Reports,CO Engineering Squadron,ARDU

Director of Hying Safety - Air Force
AHQ CSPT Amberley
RAAF Base East Sale
RAAF Base Glenbrook
RAAF Base Pearce
RAAF Base Richmond
RAAF Base Tindal
RAAF Base Williamtown
OIC ATF, ATS, RAAFSTT, WAGGA (2 copies)

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering

Melbourne
Engineering Library

Monash
Hargrave Library

Newcastle
Library
Institute of Aviation

NSW
Physical Sciences Library

RMIT
Library
Aerospace Engineering

Sydney
Engineering Library

OTHER GOVERNMENT DEPARTMENTS AND AGENCIES
AGPS
Bureau of Air Safety Investigations
Civil Aviation Authority

OTHER ORGANISATIONS
NASA (Canberra)

CANADA

Defence Research Establishment, Atlantic
J.L. Colwell

National Research Council, Ottawa
M. Sinclaire (Canadian NL TTCP HTP-6)
S. Zan

University of Toronto
L.D. Reid

Bombardier Inc., Canadair, Montreal
B.I.K. Ferrier

UNITED KINGDOM

Defence Research Agency, Bedford
G.D. Padfield
S. Täte
B. Lumsden

Defence Research Agency, Farnborough
A.F. Jones (UKNL TTCP HTP-6)

UNITED STATES

US Army Aeroflightdynamics Directorate, Ames Research Center
W.G. Bousman (USNL TTCP HTP-6)

Naval Air Warfare Center, Aircraft Division, Warminster
J.W. Clark, Jr (TTCP HTP-6)
J. Funk

Naval Air Warfare Center, Aircraft Division, Patuxent River
D. Carico
J. McCrillis
L. Trick

Naval Air Warfare Center, Aircraft Division, Lakehurst
H. Fluk

Georgia Institute of Technology, Atlanta
D. Mavris

SPARES (8 COPIES)

TOTAL (100 COPIES)

AL 149 DEPARTMENT OF DEFENCE

DOCUMENT CONTROL DATA

PAGE CLASSIFICATION

UNCLASSIFIED

PRIVACY MARKING

la. AR NUMBER

AR-008-350
lb. ESTABLISHMENT NUMBER

DSTO-TR-0048

4. TITLE

FFG-7 CLASS FRIGATE AIRWAKE
VIEWER

8. AUTHORS)

CA. HEINZE
A.M. ARNEY

10. CORPORATE AUTHOR AND ADDRESS

AERONAUTICAL AND MARITIME RESEARCH
LABORATORY
AIR OPERATIONS DIVISION
GPO BOX 4331
MELBOURNE VIC 3001 AUSTRALIA

12. SECONDARY DISTRIBUTION (OF THIS DOCUMENT)

Approved for public release.

2. DOCUMENT DATE

AUGUST 1994

5. SECURITY CLASSIFICATION

(PLACE APPROPRIATE.CLASSIFICATION

IN BOX(S) IE. SECRET (S), CONF. (C)

RESTRICTED (R), LIMITED (L),

UNCLASSIFIED (U)).

u u u

DOCUMENT TITLE ABSTRACT

3. TASK NUMBER

NAV 92/019

6. NO. PAGES

36

7. NO. REPS.

9. DOWNGRADING/DELIMITING INSTRUCTIONS

Not applicable.

11. OFFICE/POSITION RESPONSIBLE FOR:

NAVY

SPONSOR _

SECURITY _

DOWNGRADING.

APPROVAL

CAOD

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DSTIC, ADMINISTRATIVE SERVICES BRANCH, DEPARTMENT

OF DEFENCE, ANZAC PARK WEST OFHCES, ACT 2601 _^____

13a. THIS DOCUMENT MAY BE ANNOUNCED IN CATALOGUES AND AWARENESS SERVICES AVAILABLE TO....

No limitations.

Wind tunnel tests
Sea testing

IS. DISCAT SUBJECT

CATEGORIES

1310
2004

14. DESCRIPTORS

Visual display units
Oliver Hazard Perry class frigates
Aerodynamic wakes
Data acquisition
16. ABSTRACT

This document presents the operation of the graphical display program ffgView, which has been
written to run on the Silicon Graphics family of computers. The program allows the airwake
around an 'Adelaide' class FFG-7 frigate to be displayed using data generated from wind tunnel
testing or from actual ship trials. Details of the required file formats and of the structure of the
source code are included here, as are detailed operating instructions.

PAGE CLASSIFICATION

UNCLASSIFIED

PRIVACY MARKING

THIS PAGE IS TO BE USED TO RECORD INFORMATION WHICH IS REQUIRED BY THE ESTABLISHMENT FOR ITS OWN USE BUT WHICH WILL

NOT BE ADDED TO THE DISTIS DATA UNLESS SPECIFIC ALLY REQUESTED.

16. ABSTRACT (CONT).

17. IMPRINT

AERONAUTICAL AND MARITIME RESEARCH LABORATORY, MELBOURNE

18. DOCUMENT SERIES AND NUMBER

DSTO Technical Report 0048

19. WA NUMBER

51526J

20. TYPE OF REPORT AND PERIOD COVERED

21. COMPUTER PROGRAMS USED

ffgVieio
FFGWake
readcol
windcomp
Mac Trans

22. ESTABLISHMENT FILE REF.(S)

Ml/9/14

23. ADDITIONAL INFORMATION (AS REQUIRED)

